What are the environmental conditions that form carbonates?
We are using Great Salt Lake as a living geomicrobiology laboratory.
Research with Dr. Frantz combines field-based studies, sampling, chemical/geochemical analyses, laboratory-based experimental approaches, and computational modeling to understand the interactions between microorganisms and their environment, particularly in times of climate change. Dr. Frantz studies both modern environments and periods of extreme climate in the rock record.
2022 Weber State University Office of Undergraduate Research Outstanding Mentor Award for the College of Science Nominated by research students in 2017, 2019, and 2022.
There are numerous opportunities for student involvement; click here to see a list of undergraduate research projects that Dr. Frantz is currently recruiting students for.
Current research students: access the Lab Research Page here (requires password).
What are the environmental conditions that form carbonates?
We are using Great Salt Lake as a living geomicrobiology laboratory.
How do microbes build rock?
What can stromatolites and other microbialites tell us about past environments and climate?
What's happening to sea ice in the Arctic?
How are microbes involved?
Students working with me have done projects ranging from bacteriophage isolation to models of local air quality.
I may not have the answers, but I'm happy to help you find them.
Open science repositories, useful widgets, and other stuff for furthering science outreach, education, and research.
![]() |
Github repository for research- and teaching-related code |
![]() |
Research Gate publications and abstracts |
![]() |
C. Frantz. Great Salt Lake Microbialite Observatory. Open Science Framework. View-only link |
![]() |
C. Frantz (2023) Great Salt Lake experimental & environmental DNA. BioProject PRJNA916983. NCBI GenBank. Accession PRJNA916983 |
![]() |
C. Frantz, C. Gibby, R. Nilson, M. Nguyen, C. Ellsworth, C. Stern, H. Dolan, A. Sihapanya, J. Aeschlimann, B. Baxter (2023) Great Salt Lake microbialite desiccation. Open Science Framework. View-only link (pending peer review) |
![]() |
M. Ingalls, L. Trower, K. Snell, A. Fetrow, C. Frantz (2020) Giant stromatolites of the Green River Formation, LaClede Bed, Laney Member, Sand Wash Basin. Open Science Framework. doi:10.17605/OSF.IO/WB7UK |
![]() |
C. Frantz, M. Ingalls (2019) Great Salt Lake sediment metagenome raw sequence reads. BioProject PRJNA566403. NCBI GenBank. Accession PRJNA566403 |
![]() |
K. Junge (2017) Extreme summer melt: Assessing the habitability and physical structure of rotting first-year Arctic sea ice. Chukchi Sea, Alaska. 2015-2018. Arctic Data Center. doi:10.18739/A28C9R366. |
C. Frantz, C. Gibby, R. Nilson, C. J. Stern, M. Nguyen, C. Ellsworth, H. Dolan, A. Sihapanya, J. Aeschlimann, B. K. Baxter. (2023). Desiccation of ecosystem-critical microbialites in the shrinking Great Salt Lake, Utah (USA). PLOS Water, 2:e0000100. doi:10.1371/journal.pwat.0000100
M. Ingalls, A. Fetrow, K. Snell, C. Frantz, E. Trower. (2021). Lake level controls the recurrence of giant stromatolite facies. Sedimentology, 69:1649-1674. doi:10.1111/sed.12967
M. Ingalls, C. Frantz, K. Snell, E. Trower (2020) Carbonate facies-specific stable isotope data record climate, hydrology, and microbial communities in Great Salt Lake, UT. Geobiology, 18:566-593. doi:10.1111/gbi.12386
C. Frantz, B. Light, S. Farley, S. Carpenter, R. Lieplappen, Z. Courville, M. Orellana, & K. Junge (2019) Physical and optical characteristics of heavily melted "rotten" Arctic sea ice.The Cryosphere, 13:775-793. doi:10.5194/tc-2018-141
D. Newell, J. Jensen, C. Frantz, M. Vanden Berg (2017) Great Salt Lake (Utah) microbialite δ13C, δ18O, and δ15N record fluctuations in lake biogeochemistry since the Late Pleistocene. Geochemistry, Geophysics, Geosystems, 18:3631-3645. doi:10.1002/2017GC007078
S. Domagal-Goldman, K. Wright, K. Adamala, L. de la Rubia, J. Bond, L. Dartnell, A. Goldman, K. Lynch, M.-E. Naud, I. Paulino-Lima, K. Singer, M. Walter-Antonio, X. Abrevaya, R. Anderson, G. Arney, D. Atri, A. Azua, J. Bowman, W. Brazelton, G. Brennecka, R. Carns, A. Chopra, J. Colangelo-Lillis, C. Crockett, J. DeMarines, E. Frank, C. Frantz, E. de la Fuente, D. Galante, J. Glass, D. Gleeson, C. Glein, C. Goldblatt, R. Horak, L. Horodyskyj, B. Kaçar, A. Kereszturi, E. Knowles, P. Mayeur, S. McGlynn, Y. Miguel, M. Montgomery, C. Neish, L. Noack, V. Petryshyn, S. Rugheimer, E. Stüeken, P. Tamez-Hidalgo, S. Walker, T. Wong. (2016) The Astrobiology Primer 2.0. Astrobiology, 16:561-653. doi:10.1089/ast.2015.1460
V. Petryshyn, M. Juarez Rivera; H. Agic; C. Frantz; F. Corsetti; A. Tripati. (2016) Stromatolites in Walker Lake (Nevada, Great Basin, USA) record climate and lake level changes ~35,000 years ago. Palaeogeography, Palaeoclimatology, Palaeoecology, 451:140-151. doi:10.1016/j.palaeo.2016.02.054
V. Petryshyn, F. Corsetti, C. Frantz, S. Lund, W. Berelson. (2016) Magnetic susceptibility as a biosignature in stromatolites. Earth and Planetary Science Letters, 437:66-75. doi:10.1016/j.epsl.2015.12.016
C. Frantz, V. Petryshyn, F. Corsetti. (2015) Grain trapping and binding by filamentous cyanobacterial and algal mats: Implications for stromatolite microfabrics through time. Geobiology, 13:409-423. doi:10.1111/gbi.12145
C. Frantz, V. Petryshyn, P. Marenco, W. Berelson, A. Tripati, F. Corsetti. (2014) Dramatic local environmental change during the Early Eocene Climatic Optimum detected using chemical analyses of a Green River Formation stromatolite. Palaeogeography, Palaeoclimatology, Palaeoecology, 405:1-15. doi:10.1016/j.palaeo.2014.04.001