WSU Five-Year Program Review Self-Study Cover Page

Department:	Computer Science
Program:	Computer Science AS/BS
Semester Submitted:	Spring 2012
Self-Study Team Chair: External to the University but within the discipline	Dr. Nicole Anderson Assistant Professor Winona State University 859 30th Ave SE Rochester, MN 55904 <u>nanderson@winona.edu</u> 507.285-7480
Self-Study Team Members: External to the University but within the discipline	Dr. Kirk Love Department Chair, Computer Science Utah Valley University 800 West University Parkway Orem, UT 84058 <u>kirk.love@uvu.edu</u> 801. 863-8852
Internal to the University but external to the College	Dr. Brett Ellis Information Technology Vice President Weber State University Ogden, UT 84408 <u>bretellis@weber.edu</u> 801.626.7660
Internal to the University and internal to the College	Ms. JoEllen Jonsson Assistant Professor Weber State University 1503 University Circle Ogden, UT 84408-1503 jjonsson@weber.edu 801.626.6910
CS Contact Information: Phone: Email:	Dr. Delroy Brinkerhoff, Associate Professor 801. 626.7345 <u>dbrinkerhoff@weber.edu</u>

A. Brief Introductory Statement

The Computer Science Department (CS) is a part of the College of Applied Science and Technology (COAST) at Weber State University (WSU). Students may pursue the following degree options in the Computer Science program:

- Bachelor of Science in Computer Science
- Associate of Applied Science in Computer Science
- Minor in Computer Science
- Component of a Bachelor's of Integrated Studies (BIS)
- Certificate in Game Development

In the Associate program, students learn the fundamentals of software design and implementation. The fundamentals include project management, web development, the behavior of common data structures, database design and development, computer architecture, designing and using networks, and programming experience in both the Java and C++ programming languages.

Students are further guided to select appropriate general education courses that complement their experience in the computer science department. These general education courses develop the student's verbal and writing communication skills, and their ability to solve problems using mathematics and physics.

Bachelor's-level courses expand the student's earlier experiences while also allowing them to tailor and focus their advanced training. Required courses include operating systems, computational structures (computer-centric mathematics and algorithm analysis), advanced software engineering, and formal computing languages (computability based on theoretical models of computers). Students also select and specialize in at least one of Java, C++, or C#.

Students must select a minimum of three addition elective courses, which are grouped into four focus areas: Master's degree preparation, web development, mobile development, and network security. Although elective courses are grouped into focus areas, students may choose to take electives from different groups.

B. Mission Statement

Weber State University's mission statement is:

Weber State University provides associate, baccalaureate and master degree programs in liberal arts, sciences, technical and professional fields. Encouraging freedom of expression and valuing diversity, the university provides excellent educational experiences for students through extensive personal contact among faculty, staff and students in and out of the classroom. Through academic programs, research, artistic expression, public service and community-based learning, the university serves as an educational, cultural and economic leader for the region. (Approved by the Board of Regents July 2011)

In harmony with the University's mission, the Department of Computer Science has adopted the following vision statement:

To become and be recognized as the outstanding undergraduate program in applied Computer Science in the Western United States. Specifically, to be recognized by employers as the best program to produce graduates who are quickly productive and produce software and computer systems of the highest quality.

To achieve this goal, the Department of Computer Science has initiated the process of becoming ABET accredited and so chooses to express as its mission the goal of graduating students who achieve the following program educational objectives. (The WSU CS department adopts the ABET definition of program educational objectives as "broad statements that describe what graduates are expected to attain within a few years of graduation.")

Students

- 1. Will conduct themselves professionally and ethically at all times, and will understand the professional, ethical, legal, security, social responsibilities of computing professionals
- 2. Have developed and practice the skills necessary for self-learning
- 3. Proficient at solving problems
- 4. Able to function effectively and to collaborate collegially as a part of a team
- 5. Proficient at analyzing, designing, and validating software with contemporary modeling languages and tools
- 6. Proficient at implementing software systems with at least one contemporary high-level programming language
- 7. Proficient at designing and documenting test cases and test plans
- 8. Proficient with at least one operating system
- 9. Proficient at designing and using databases

To guide and focus the activities of the department to achieve these program educational objectives, the department has adopted a set of student learning outcomes, which are presented in the table on the following page, and which conform to the ABET definition of student outcomes as describing "what students are expected to know and be able to do by the time of graduation." It is necessary that the department's student learning outcomes demonstrate an articulation with the ABET required student learning outcomes, and this articulation is also demonstrated in the following table. A second table demonstrates the same articulation but is organized by the ABET outcomes to ease the task of verifying that all ABET outcomes are appropriately and correctly enabled.

	WSU Student Learning Outcomes	Enabled ABET Outcomes
1.	Students will understand the importance of and will practice professional and ethical	(e) An understanding of professional, ethical, legal, security and social issues and
	behavior, and will understand the professional, ethical, legal, security, and social	responsibilities
	responsibilities of computing professionals	(g) An ability to analyze the local and global impact of computing on individuals,
		organizations, and society
2.	Students will be able to read and understand manuals, documentation, and technical	(i) An ability to use current techniques, skills, and tools necessary for computing practice.
	literature, find and understand sources of information, and learn on their own what they	(h) Recognition of the need for and an ability to engage in continuing professional
	need to continue to perform professionally after graduation	development
3.	Students will be able to solve new problems and to express their new solutions	(a) An ability to apply knowledge of computing and mathematics appropriate to the
	appropriately	discipline
		(b) An ability to analyze a problem, and identify and define the computing requirements
		appropriate to its solution
		(j) An ability to apply mathematical foundations, algorithmic principles, and computer
		science theory in the modeling and design of computer-based systems in a way that
		demonstrates comprehension of the tradeoffs involved in design choices
4.	Students will be able to function as a team member and carry out assigned tasks	(d) An ability to function effectively on teams to accomplish a common goal
5.	Students will have the knowledge and the skills needed to be employable, and to be	(c) An ability to design, implement, and evaluate a computer-based system, process,
	immediately and continuously productive	component, or program to meet desired needs
		(i) An ability to use current techniques, skills, and tools necessary for computing practice
6.	Students will have a basic understanding of computer theory, software design and	(a) An ability to apply knowledge of computing and mathematics appropriate to the
	operation, project management, databases, networking, and computer hardware	discipline
		(b) An ability to design, implement, and evaluate a computer-based system, process,
		component, or program to meet desired needs
		(J) An ability to apply mathematical foundations, algorithmic principles, and computer
		science theory in the modeling and design of computer-based systems in a way that
-		demonstrates comprehension of the tradeoffs involved in design choices
7.	Students will understand algorithm design and now to express and now to implement	(a) An ability to apply knowledge of computing and mathematics appropriate to the
	argorithms using a variety of notation, programming languages, and paradigms	(b) An ability to analyze a problem and identify and define the computing requirements
		(b) An ability to analyze a problem, and identify and define the computing requirements
		(c) An ability to design implement and evaluate a computer based system process
		component or program to meet desired needs
8	Students will be able to debug computer programs	(b) An ability to analyze a problem and identify and define the computing requirements
0.	Students will be able to debug computer programs	appropriate to its solution
9	Students will be able to express themselves clearly both verbally and in writing	(f) An ability to communicate effectively with a range of audiences
10	Students will be able to critically evaluate the quality and the features of information	(b) An ability to analyze a problem and identify and define the computing requirements
10.	from various sources and to make informed decisions about the design of information	appropriate to its solution
	systems	(c) An ability to design, implement, and evaluate a computer-based system, process.
		component, or program to meet desired needs
		(k) An ability to apply design and development principles in the construction of software
		systems of varying complexity
11.	Students will be prepared for graduate studies in Computer Science and will have the	
	necessary knowledge and skills to be accepted into and succeed in relevant programs if	
	they desire to continue their education in computer science	

	Required ABET Outcomes	Corresponding WSU Student Learning Outcomes
(a)	An ability to apply knowledge of computing and mathematics appropriate to the	3. Students will be able to solve new problems and to express their new solutions
	discipline	appropriately
		6. Students will have a basic understanding of computer theory, software design and
		operation, project management, databases, networking, and computer hardware
		7. Students will understand algorithm design and how to express and how to implement
		algorithms using a variety of notation, programming languages, and paradigms
(b)	An ability to analyze a problem, and identify and define the computing	3. Students will be able to solve new problems and to express their new solutions
	requirements appropriate to its solution	appropriately
		6. Students will have a basic understanding of computer theory, software design and
		operation, project management, databases, networking, and computer hardware
		7. Students will understand algorithm design and now to express and now to implement
		algorithms using a variety of notation, programming languages, and paradigms
		6. Students will be able to active ally evaluate the quality and the features of information
		from various sources and to make informed decisions about the design of information
		systems
(c)	An ability to design implement, and evaluate a computer-based system process	5 Students will have the knowledge and the skills needed to be employable, and to be
(0)	component or program to meet desired needs	immediately and continuously productive
	component, or program to meet desired needs	7. Students will understand algorithm design and how to express and how to implement
		algorithms using a variety of notation, programming languages, and paradigms
		10. Students will be able to critically evaluate the quality and the features of information
		from various sources and to make informed decisions about the design of information
		systems
(d)	An ability to function effectively on teams to accomplish a common goal	4. Students will be able to function as a team member and carry out assigned tasks
(e)	An understanding of professional, ethical, legal, security and social issues and	1. Students will understand the importance of and will practice professional and ethical
	responsibilities	behavior, and will understand the professional, ethical, legal, security, and social
		responsibilities of computing professionals
(f)	An ability to communicate effectively with a range of audiences	9. Students will be able to express themselves clearly both verbally and in writing
(g)	An ability to analyze the local and global impact of computing on individuals,	1. Students will understand the importance of and will practice professional and ethical
	organizations, and society	behavior, and will understand the professional, ethical, legal, security, and social
(1.)	D	responsibilities of computing professionals
(n)	Recognition of the need for and an ability to engage in continuing professional	2. Students will be able to read and understand manuals, documentation, and technical
	development	need to continue to perform professionally often and understand sources of information, and learn on their own what they
(;)	An ability to use summent techniques, shills, and tools recording for computing	2. Students will be able to read and understand manuals, documentation, and technical
(1)	An ability to use current techniques, skins, and tools necessary for computing	2. Students will be able to read and understand manuals, documentation, and technical literature, find and understand sources of information, and learn on their own what they
	praetice	need to continue to perform professionally after graduation
(i)	An ability to apply mathematical foundations, algorithmic principles, and computer	3. Students will be able to solve new problems and to express their new solutions
	science theory in the modeling and design of computer-based systems in a way that	appropriately
	demonstrates comprehension of the tradeoffs involved in design choices	6. Students will have a basic understanding of computer theory, software design and
		operation, project management, databases, networking, and computer hardware
(k)	An ability to apply design and development principles in the construction of	10. Students will be able to critically evaluate the quality and the features of information
()	software systems of varving complexity	from various sources and to make informed decisions about the design of information
	······································	systems
	software systems of varying complexity	from various sources and to make informed decisions about the design of information systems

C. Curriculum

Curriculum Map: Core Courses Articulated with Student Learning Outcomes

I = Introduced	Department/Program Learning Outcomes										
R = Reinforced E = Emphasized ¹		2. Read technical literature and learn on their own	 Solve problems and express solutions 	.Function in teams and carry out assignments	. Knowledge and skills need for employment	 Theory, design, operation, project management, & DB ² 	7. Understand and use algorithms	8. Debug programs	9. Verbal and writing skills	10. Evaluate information systems	11. Preparation for graduate studies ²
CS1400 Fundamentals of Programming	Ι		Ι	- 7	I			Ι			
CS1410 Object-Oriented Programming	R	Ι	R		R	Ι	Ι	R			Ι
CS2350 Web Development	R	R	R		R						
CS2420 Introduction to Data Structures & Algorithms	R	R	R		R	R	R	R			R
CS2450 Software Engineering I	R	R	R	Ι	R	R	R	R	Ι	Ι	
CS2550 Database Design & Application Development	R	R	R		R	R			R		
CS2650 Computer Architecture/Organization	R	R	R		R	R	R	R	R	R	R
CS2705 Network Fundamentals and Design	R	R	R		R			R		Ι	
MGMT2400 Project Management ³	R		R	R	R	R			R		
CS3100 Operating Systems	R	R	R		R	R			R	R	R
CS3130 Computational Structures	R		R		R	R	R				R
CS3750 Software Engineering II	E	R	R	R	R			R	E	E	
CS4110 Concepts of Formal Languages and Algorithms			R	R	R	E	E				E
CS4230 Java Application Development ⁴	E	E	E	E	E	E	E	Е	E		
CS4750 Advanced Software Engineering ⁴	E	E	E	E	E	E	E	Е	E		
CS4790 N-Tier Web Programming ⁴	E	E	E	Е	E	E	E	E	E		

¹ Program improvement statistics are collected for these courses

² This outcome is more fully enabled through elective courses

³ This course is taught by qualified CS faculty in support of departmental student learning outcomes

⁴ Students must select one course

Curriculum Map: Core Courses Articulated with Program Educational Objectives

Most courses do not contribute to all objectives and no objective is fully enabled by a single course. The following table describes the course-level support for each of the department's program educational objectives.

	Program Educational Objectives and Course Support								
Course	1. Will conduct themselves professionally and ethically at all times	2. Have developed and practice the skills necessary for self -learning	3. Proficient at solving problems	4. Able to function effectively and to collaborate collegially as a part of a team	5. Proficient at analyzing, designing, and validating software with contemporary modeling languages and tools	6. Proficient at implementing software systems with at least one contemporary high- level programming language	7. Proficient at designing and documenting test cases and test plans	8. Proficient with at least one operating system	9.Proficient at designing and using databases
CS10301	Х	Х	Х		Х	Х		Х	Х
CS1400	Х	Х	Х	Х				Х	
CS1410	Х	Х	Х		Х	х	х	Х	
CS2420	Х	Х	Х		Х	Х			
CS2450	Х	Х	Х	Х	Х				
CS2350									
CS2550	Х	Х	Х		Х				Х
CS2650	Х	Х	Х		Х			Х	
CS2705	Х	Х	Х	Х					
MGMT 2400 ²	Х	Х	Х	Х					
CS3100	Х	Х	Х			Х		Х	
CS3130	Х	Х	Х	Х		Х			
CS3750	Х	Х	Х	Х	Х	Х	Х	Х	Х
CS4110	Х	Х	Х	Х		Х			
CS4230 ³	Х	Х	Х	Х	Х	Х	Х	Х	Х
CS4750 ³	Х	Х	Х	Х	Х	Х	Х	Х	Х
CS4790 ³	Х	Х	Х	Х	Х	Х	Х	Х	Х

¹ This is a preparatory not a required course; students may test-out or satisfy the requirement with high school classes

² This course is taught by qualified CS faculty in support of program educational objectives

³ Students must select one course

D. Student Learning Outcomes and Assessment

The WSU Dept. of Computer Science collects assessment data for each of its core courses as a part of its continuous program improvement process. The program improvement process is detailed in the diagram below. The process begins with the combined university and department mission statements presented previously. The department has established program educational objectives in harmony with the institution's mission and has derived a set of student outcomes that define a trajectory leading students to obtain the program educational objectives within a few years of graduation.

The program educational objectives and student outcomes are also defined in cooperation with a community of primary stakeholders: faculty (contributing experience, observation, and research), an industrial advisory committee (whose members hire the department's graduates), students (data is gathered from graduates and their employers), and a

comparison of programs offered at other institutions. Stakeholders meet twice per year (Fall and Spring semester) and reevaluate the program educational objectives. The semiannual review process insures that (a) the program educational objectives remain germane, and (b) the department's educational practices and strategies are enabling graduates to achieve the objectives in a reasonable amount of time.

The following list of student outcomes define the fundament skills that a student should attain at the completion of their study in computer science at WSU:

- 1. Students will understand the importance of and will practice professional and ethical behavior, and will understand the professional, ethical, legal, security, and social responsibilities of computing professionals
- 2. Students will be able to read and understand manuals, documentation, and technical literature, find and understand sources of information, and learn on their own what they need to continue to perform professionally after graduation
- 3. Students will be able to solve new problems and to express their new solutions appropriately
- 4. Students will be able to function as a team member and carry out assigned tasks
- 5. Students will have the knowledge and the skills needed to be employable, and to be immediately and continuously productive
- 6. Students will have a basic understanding of computer theory, software design and operation, project management, databases, networking, and computer hardware
- 7. Students will understand algorithm design and how to express and how to implement algorithms using a variety of notation, programming languages, and paradigms
- 8. Students will be able to debug computer programs
- 9. Students will be able to express themselves clearly both verbally and in writing
- 10. Students will be able to critically evaluate the quality and the features of information from various sources and to make informed decisions about the design of information systems
- 11. Students will be prepared for graduate studies in Computer Science and will have the necessary knowledge and skills to be accepted into and succeed in relevant programs if they desire to continue their education in computer science

The student outcomes influence the selection and development of appropriate educational (i.e., pedagogical) practices and strategies. Together, the student outcomes and the educational practices guide the specification of a set of performance indicators, which clearly describe the various performance levels that students demonstrate. Assessment data is collected throughout and at the end of each course. This data is used for course-level improvement. Program-level data is collected at the end of emphasizing courses (see section C above) and drives the continuous program improvement. Program-level data is evaluated in the context of set of department-defined scoring rubrics that are articulated with the student outcomes. The Dept. of Computer Science is currently in the process of defining the performance indicators and the associated scoring rubrics.

When complete, the results of the analysis of the program-level assessment data provides feedback used to update the program educational objectives, the student outcomes, performance indicators and the full spectrum of data collection and analysis techniques.

The Department of Computer Science collects and analyzes program-level assessment data on the core courses on a five-year cycle as a part of its continuous improvement process. The following table summarizes the data collection schedule.

Course	2011-	2012-	2013-	2014-	2015-
Course	2012	2013	2014	2015	2016
CS1410 Object-Oriented Programming	С	А	Ι		С
CS2420 Introduction to Data Structures &	С	А	Ι		С
Algorithms					
CS2450 Software Engineering I	С	А	Ι		С
CS3130 Computational Structures	С	А	Ι		С
CS1400 Fundamentals of Programming		С	А	Ι	
CS2550 Database Design & Application		С	А	Ι	
Development					
CS2705 Network Fundamentals and		С	А	Ι	
Design					
CS3230 Internet Multimedia Services and		С	А	Ι	
Applications Using Java					
CS2350 Web Development			С	А	Ι
CS2650 Computer			С	А	Ι
Architecture/Organization					
CS3100 Operating Systems			С	А	Ι
CS4110 Concepts of Formal Languages			С	А	Ι
and Algorithms for Computing					
CS 3750 Software Engineering II				С	А
CS 4230 Java Application Development				С	A
CS 4750 Advanced Software Engineering				С	A
CS 4790 N-Tier Web Programming				С	А

CD – Collect Data

AD – Analyze Data

I – Implement Improvements

The definition of appropriate assessment procedures is currently underway for the first four courses (CS1410, CS 2420, CS 2450, and CS 3130). Currently the instructional content targeting student outcomes has been identified and the corresponding assessments have been specified, which now makes it possible to begin data collection and analysis. Articulating student outcomes with specific exam questions enables tracking student performance through automated testing tools (WSU has developed and uses Chi-Tester, a tool that supports this feature). The following tables summarize the course content, the associated outcomes, and the corresponding assessments.

Instructional Content CS 1410 Object-Oriented Programming in C++	Student Outcomes	Assessment
1. Dasies	5	Programs 1 - 11
studio	5	
1.2. The compilation	5	Programs 1 - 11
process: the		
preprocessor, the		
compiler, the linker		
1.3. Multi-file programs	5	Programs 4, 6 - 11
2. Simple Programs	1, 3, 5, 6, 8,	Programs 1 - 11
(variables, constants,	11	Exam 1: 1 - 23
operators, & casting)		Exam 2: 14 - 15
3. Program using flow-of-	1, 3, 5, 6, 8,	Programs 2, 3, 5, 11
control statements (if,	11	Exam 1: 24 - 58
switch, for, while, do,		
break, and continue)		
4. Structures and	1, 3, 5, 6, 8,	Exam 2: question 1
enumerations	11	D 4
4.1. Fields / members		Program 4
4.2. Pointers and		Program 4
references (content		Exam 2: 2 & 3
vs. audress, audress of		Exam 4: 24
operators)		
5 Functions	13567	
5. I unctions	8, 11	
5.1. Definition		Program 4, 6 - 11
5.2. Declaration /		Program 4, 6 - 11
prototype		
5.3. Calls (pass-by-value,		Program 4, 6 - 11
reference, and		Exam 2: 4 - 6, 18 - 20
pointer)		Exam 4: 25
5.4. Function overloading,		Program 6
recursion, and default		Exam 2: 22 - 23
arguments		
6. Arrays, array function	1, 3, 5, 6, 8,	Program 5
arguments	11	Exam 2: 9 - 12, 23 - 25, 27
7. C-strings and string objects	1, 2, 3, 5, 6, 8, 11	
7.1. c-string functions		Programs 5, 11
		Exam 2: 7 - 8, 26
7.2. string class member		Programs 5, 11
functions		

Instructional Content CS 1410 Object-Oriented Programming in C++	Student Outcomes	Assessment
7.3. Command line		Programs 5
arguments: argc &		Exam 2: 15 - 17
argv		
7.4. Ascii codes		
8. Classes and objects	1, 3, 5, 6, 8, 11	
8.1. Encapsulation,		Programs 6-10
member data and		Exam 2: 16 - 18
functions, modifiers		Exam 3: 26 - 29, 39 - 41, 43 - 44
(public, private, & protected)		
8.2. Constructors and		Programs 6-10
destructors; the copy		Exam 3: 1 - 2, 33 - 35
constructor;		
conversion		
constructors		
8.3. The this pointer		
9. Class relations	1, 2, 3, 5, 6, 7, 8, 11	Exam 3: 42
9.1. UML diagrams		Programs 9 & 10
		Exam 2: 11 - 15
9.2. implementing class		Programs 9 & 10
relations in C++:		Exam 2: 19 - 25
inheritance,		
association,		
aggregation,		
composition, &		
dependency		
10. Polymorphism	1, 3, 5, 6, 8, 11	
10.1. virtual functions,		Program 10
casting, and function		Exam 4: 12 - 19, 21 - 22
overriding		
10.2. pure virtual		Program 10
functions and abstract		
classes		E 2.20
11. Uverloaded operators	1, 3, 5, 6, 8, 11	Exam 3: 38
11.1. Overloading		Programs 7-9
arithmetic operators		Exam 2: 3 - 10
and >> and <<		Exam 3: 30 - 32
11.2. friend functions		Programs 7-9

Instructional Content CS 1410 Object-Oriented Programming in C++	Student Outcomes	Assessment
		Exam 3: 36 - 37
12. Memory management	1, 3, 5, 6, 8, 11	
12.1. Static versus dynamic instantiation		Program 10
12.2. Stack and heap		Program 10
12.3. New and delete operators		Program 10
13. I/O stream classes: ifstream, ofstream, fstream	1, 2, 3, 5, 6, 8, 11	Program 11
13.1. Stream functions		Program 11 Exam 4: 23
13.2. Text versus binary files		Exam 4: 7 - 11
13.3. Manipulators and formatting functions		Program 11
13.4. Error detection: good, bad, fail		Program 11
14. Templates	1, 3, 5, 6, 8, 11	Program 10 Exam 4: 3 - 4, 20
15. Exceptions	1, 3, 5, 6, 8, 11	
15.1. The purpose of exceptions		Exam 4: 1 - 2
15.2. try / catch blocks		Exam 4: 5 - 6

Instructional Content		
CS 2420 Introduction to	Student	Accordment
Data Structures and	Outcomes	Assessment
Algorithms		
1 Review of CS 1410 concepts	2, 3, 5, 6,	Two or three challenging homework assignments are
	7, 8, 11	given as review. A common assignment used is a Big
		Int calculator class which performs addition,
		subtraction, multiplication, and division, for both
		negative and positive numbers. Another is a fully
		functional roman numeral class, with similar
		mathematical operators.
		For item 1 given in the Contest List, each assignment
		attempts to review five to seven of the nine listed
		review items. It takes roughly three to four weeks to
		review all concepts through homework and lecture.
		Assessment is done with weekly quizzes on these
		concepts. Homework assignments are also graded.
		These concepts are all assessed in a midterm.
2.2 and 2.3 Singly linked lists	2, 3, 5, 6,	An initial homework assignment has students
and iterators	7, 8, 11	implementing additional methods for a linked list class.
		These include deleting nodes by value, deleting all
		nodes by value (in one pass), deleting the smallest
		item, finding the kth element and returning its info.
		Iterators are added into this assignment. Students
		must make iterators act similar to STL list iterators,
		with a few modifications. The iterators should be able
		to suppose operator overloads for +, -, ++,,
		overloaded * for dereferencing, and overloaded [] for
		array like access.
		Sample code is given in main() which provides test
		cases to ensure the student code meets the expected
		output.
		Assessment is again done with weekly quizzes on these

Instructional Content		
CS 2420 Introduction to	Student	Assessment
Data Structures and	Outcomes	Assessment
Algorithms		
		concepts. The homework assignment is also graded.
		These concepts are all assessed in a midterm.
2.4 Doubly linked lists and 3	2, 3, 5, 6,	A homework assignment covering stacks and queues
Stacks and Queues	7, 8, 11	are given. A lecture is given on stacks, queues, and
		priority queues. The expected implementation of the
		homework is to effectively write a class which handles
		all functionality of stacks, queues, and priority queus,
		but does so internally using a doubly linked list.
		Students are required to modify their prior singly linked
		list into a doubly linked list. Then the student must
		implement all necessary stack, queue, and priority
		queue methods.
		Sample code is given in main() which provides test
		cases to ensure the student code meets the expected
		output.
		Assessment is again done with weekly quizzes on these
		concepts. The homework assignment is also graded.
		These concepts are all covered in a midterm.
2.5 Circular linked lists	7, 11	This is only lectured. Occasionally this is covered in a
	2250	midterm.
4. Hash tables	2, 3, 5, 6,	A nomework assignment for hash tables are given. The
	7, 8, 11	student must write his or her own hash algorithm. The
		resulting object must be stored in the hash table, which
		Internally is implemented as an array of linked lists.
		The nomework covers closed hashing. The assignment
		also ties together multiple review concepts from
		content list item #1 in ways that students typically had
		not yet encountered. Specifically, the students must
		tearn to work with multiple classes simultaneously. The
		student must also understand how to properly work
		with pointers as arrays, and how to create many linked
		lists in an array.

Instructional Content CS 2420 Introduction to Data Structures and Algorithms	Student Outcomes	Assessment
		Sample code is given in main() which provides test cases to ensure the student code meets the expected output.
		Open hashing, array based concept, and probing techniques are lectured but not assessed.
		Assessment is again done with weekly quizzes on these concepts. The homework assignment is also graded. These concepts are all covered in a final exam.
5. Algorithmic efficiency	2, 6, 11	This topic covered in every subsequent lecture. As each new algorithm is described, its efficiency in time and space are analyzed.
		This is heavily tested in both quizzes and the final exam. One variation of an upcoming sort assignment does have students identify which possible sort algorithms are used by measuring how long it takes to complete.
6. Sort and search algorithms	2, 3, 5, 6, 7, 8, 11	Each search and sort algorithm is heavily tested in both quizzes and the final exam.
		Because textbooks supply these algorithms freely, the assignment does not require students to solve a problem by implementing code. Rather, the student needs to provide a visual display to how sorting actually processes. One variation of an has have students identify which possible sort algorithms are used by measuring how long it takes to complete.
7.1 Sorted binary trees	2, 3, 5, 6, 7, 8, 11	A homework assignment is given which requires the student to generate a parse tree to take a normal mathematical expression given as a C string, place it into a parse tree, then compute the solution to that expression. The student also needs to print out the

Instructional Content CS 2420 Introduction to Data Structures and Algorithms	Student Outcomes	Assessment
		expression again from the tree in pre-order, in-order, and post-order (Reverse Polish notation) fashion. Occasionally functors are included as part of the implementation for this assignment. Traversal methods are frequently tested in both quizzes and in the final exam.
7.2 AVL trees and B trees	2, 3, 5, 6, 7, 8, 11	Due to the lack of time typically found at the end of each semester, only one of these two are assessed in a homework assignment. The assignment is fairly straightforward. Each tree needs a handful of commonly used methods. The textbook provides code for some, concepts for others. The assignment is to complete the methods in which the book did not provide the code. Insertion and deletion algorithms are assessed in both quizzes and the final exam
8 Graphs	2, 3, 5, 6, 7, 8, 11	A homework assignment is given in which students are given a PDF containing a graph of roughly 20-30 nodes and 50-70 edges. The student then needs to provide a program which asks the user for a starting node, and then lists the shortest path and path sequence needed to each other node. The student also needs to print out the graph using breadth first and depth first traversal to ensure the graph was implemented in code correctly. Breadth first, depth first, and Dijkstra's algorithm are covered on the final exam. They are not covered in a quiz, as the semester is drawing to a close.

Instructional Content	Student	lent									
CS 2450 Software Engineering	Outcomes	Assessment									
1.1. Steps to problem solving	3, 7, 9	 Problem solving consists of six steps: 1. Identify the problem (What is the problem?) 2. Understand the problem (What is involved with the problem? What does the client want? Maybe the client does not know what they want. Make sure you know the client.) 3. Identify alternative ways to solve the problem (Create a list. Maybe talk with others. Make sure they could be acceptable solutions.) 4. Select the best way to solve the problem from the list of alternative solutions (What are the pros and cons of each solution?) 5. List the instructions that enable you to solve the problem using the selected solution (Create a numbered list of instructions) 6. Evaluate the solution (Did it satisfy the needs of the client with the problem?) Use these steps to solve the problem such as: 									
		What to do this evening?Where to eat dinner?									
1.2. Why projects fail	1,2,3,9,10	Find a failed Software Project. Create a PowerPoint with graphics and sources as to why it failed (you can use http://www.codinghorror.com/blog/2006/05/the- long-dismal-history-of-software-project- failure.html as resources to find a project) There should be one slide describing the project.									
		one slide describing why it failed and one slide with your source(s)									
1.7. Working as a team	4	Fill out group survey and discuss different personalities. Apply throughout the semester as Professor meets with teams in verbal environment discussing and re-emphasizing personalities									
2.1. System request	2-6, 9, 10	Create a system request similar to the one on page 61 using Professor Anderson as the Project Sponsor. The Business need will be to improve the program. Then look at page 58 and create a feasibility analysis including the technical, economic, and									

Instructio	nal Content	Student	
CS 2450 So	oftware Engineering	Outcomes	Assessment
1			organizational aspects similar to the one on page
			63. The economic might be difficult depending on
			your system request but try your best.
			You can also use the project sponsor as a resource
			for information.
			There is no page requirement Just make sure you
			do a thorough job and think about the opportunity
			costs (if you do this you can't do something else)
			and the ROI (return on your investment - is this
			project better to do than another).
2.2.	Selecting a project	4,10	As a team, think about your Computer Science
			Department and choose an idea that could improve
			student satisfaction within your educational
			one on page 61 using Professor Anderson as the
			Project Sponsor. The Business need will be to
			improve the program.
3.0 Mar	aging the project	2,3,9	Chapter 3, questions 2, 5, 7, 11
3.3.2	Project charter	2,4,9	Page 95. Do 3-4 the project charter
4.3	. Requirements strategies	2,4,9	Chapter 4, questions 1-2, 5, 15
4.4	. Gathering	3,4,9,10	Create a list of questions for the client (the
	requirements		professor) regarding your system request. Email
			the list to the client by Jan 31st at midnight. When
			the client responds, use that information plus all other information you have gathered to create a list
			of the functional and nonfunctional business
			requirements for your system request.
5.1.	Activity diagrams	3,4,5,9,10	Based upon the current project create an activity
			diagram and review the diagram as a team
5.2.	Use case diagrams	3,4,5,9,10	Based upon the current project create a use case
			diagram and review the diagram as a team
6.2.	CRC cards	3,4,5,9,10	Using the provided template, fill out the CRC cards
6.2	Class diagrams	215010	for your project.
0.3.		3,4,3,9,10 3 <u>4</u> 5010	As a tealli, create a class ulagranii for your project Based upon the current project create a sequence
L. / .1. diao	rams	5,4,5,7,10	diagram and then review it with your team
7.2.	CRUD analysis	3,4,5,9.10	As a team perform a CRUD analysis for your system
8.1.	Validating the	3,4,5,9,10	Perform a walkthrough with your peers validating

Instruction CS 2450 Sof I	al Content tware Engineering	Student Outcomes	Assessment
analy	sis		the activity, use case, sequence, and class diagrams
9.2.	Normalization	3,4,5,9,10	As a team, create an ERD
10. Human c	omputer interface	3,4,5,9,10	For the assigned project, design the graphical user interface to meet the client's needs within the scope of the project. As a team, review the documentation and confirm that the GUI does indeed meet functional requirements.
11.2. diag	Deployment ram	3,4,5,9,10	Create a deployment diagram for the current project and then review it with your team
11.3. requ	Security irements	3,4,5,9,10	Determine any security requirements for the current project
12.1	Testing plan	3,4,5,9,10	Create a plan to test the project to ensure that it meets all functional and non-functional requirements
12.2.	Maintenance plan	3,4,5,9,10	Create a maintenance plan for the project to ensure that it future changes will be handled according the strategy defined within the scope of the project

Instructional Content CS 3130 Computational Structures	St	ud	ent	t 0 ⁻	utc	on	ies					Assessment
Outcomes	1	2	3	4	5	6	7	8	9	10	11	
												Quiz #1,#2/Exam
1 Discroto Math Structuro												#1/Final Exam
1. Discrete Math Structure												Team Assignment
	х	х	х	х	х	х			х	х	х	#1
												Quiz #1,#2/Exam
1.1 Definition												#1/Final Exam
												Team Assignment
	х	х	х	х	х	х			Х	Х	Х	#1
												Quiz #1,#2/Exam
1.2. Operations												#1/Final Exam
												Team Assignment
	х	х	х	х	х	х			Х	Х	Х	#1
												Quiz #1,#2/Exam
1.3. Properties of Operations												#1/Final Exam
F F F F F F F F F F F F F F F F F F F												Team Assignment
	Х	Х	х	х	х	х			Х	Х	Х	#1
2. Application and Theory of Sets												Quiz $#1, #2/Exam$
		Х	Х		Х	Х					Х	#1/Final Exam
2.1. Set notation and definition												Quiz $\#1,\#2/Exam$
		Х	Х		х	Х					Х	#1/Final Exam
2.2. Elements and member of a Set												Quiz $\#1,\#2$ /Exam
		Х	Х		Х	Х					Х	#1/Final Exam
2.3. Subsets												Quiz #1,#2/Exam #1/Final Exam
2.4 Operations on Sets including		Х	Х		Х	Х					Х	#1/FIIIdI EXdili
2.4. Operations on Sets, including												Quiz #1 #2 /Exam
Summotric Difforence												$\frac{1}{1}$
2.5 Algobraic Proportion of Sot		х	х		х	х					Х	#1/Final Exam
operations		v	v		v	v					v	#1/Final Evam
2.6 The Addition Principle and its		~	^		^	^					^	$\Omega_{\rm uiz} \pm 1 \pm 2/{\rm Fyam}$
Application		v	v		v	v					v	$\frac{41}{\text{Final Fyam}}$
2.7 Computer Implementation of		^	^		^	^					^	Programming
Sets		x	x		x	x	×	×			x	Assignment #1
		~	~		~	~	~	~			~	$O_{\rm uiz}$ #1 #2/Exam
												#1/Final Exam
												Team Assignment
3. Functions												#1
												Programming
	x	х	х		х	х		x	х		х	Assignment #1
												Quiz #1.#2/Exam
3.1. Specialized form of Relation												#1/Final Exam
·	х	х	х		х	х			х		х	Team Assignment

										#1
										Programming
										Assignment #1
										Quiz #1,#2/Exam
										#1/Final Exam
3.2. Functions as a mapping										Team Assignment
between sets										#1
										Programming
	х	х	х	х	х			х	х	Assignment #1
										Quiz #1,#2/Exam
										#1/Final Exam
2.2 Domain Co Domain and Bango										Team Assignment
5.5. Domain, Co-Domain, and Kange										#1
										Programming
	х	х	х	х	х			х	х	Assignment #1
3.4. Composition of three or more										Quiz #2/Exam
functions		х	х	х	х				х	#1/Final Exam
										Quiz #2/Exam
3.5 Proportion of Functions										#1/Final Exam
5.5. Tropercies of Functions										Programming
		х	х	х	х				х	Assignment #1
										Quiz #2/Exam
3.5.1. One-to-one correspondence										#1/Final Exam
(bijection)										Programming
		х	х	х	х				х	Assignment #1
										Quiz #2/Exam
352 Everywhere defined										#1/Final Exam
5.5.2. Everywhere defined										Programming
		х	х	х	х				х	Assignment #1
										Quiz #2/Exam
353 Onto										#1/Final Exam
5.5.5. 0110										Programming
		х	х	х	х				х	Assignment #1
										Quiz #2/Exam
354 Invertible										#1/Final Exam
										Programming
		х	х	х	х				х	Assignment #1
3.6 Functions for Computer Science										Quiz #1/Exam
s.o. Tunctions for computer science		х	х	х	х	х	х		Х	#1/Final Exam
3.6.1 Characteristic Function										Programming
		х	х	х	х	х	х		х	Assignment #1
3.6.2. Floor function		Х	х	х	х	х	х		х	Quiz #2
3.6.3. Ceiling function		Х	х	Х	Х	х	х		х	Quiz #2
3.6.4. Hashing function		Х	х	Х	х	х	х		х	Quiz #2
4. Propositions and Logical		х	х	х	х	х			х	Quiz #3,#4/Exam

Operations											#2/Final Exam
4.1. Types of Statements –											Quiz #3,#4/Exam
Declarative, Interrogative, etc.	х	х		х	х	х				х	#2/Final Exam
											Quiz #3,#4/Exam
4.2. Propositional variables	х	х		х	х	х				х	#2/Final Exam
											Quiz #3,#4/Exam
4.3. Truth Tables	х	х		х	х	х				х	#2/Final Exam
4.4. Negation, Conjunction,											Quiz #3,#4/Exam
Disjunction, Biconditional	х	х		х	х	х				х	#2/Final Exam
4.5. Implications (hypothesis and											Quiz #3,#4/Exam
conclusion)	х	х		х	х	х				х	#2/Final Exam
A (Dradiantas and Orrentifians											Quiz #3,#4/Exam
4.6. Predicates and Quantiners	х	х		х	х	х				х	#2/Final Exam
A (1 Universal Overstifier											Quiz #3,#4/Exam
4.6.1. Universal Quantifier	х	х		х	х	х				х	#2/Final Exam
4(2) Evictorial Quantifier											Quiz #3,#4/Exam
4.6.2. Existential Quantiner	х	х		х	х	х				х	#2/Final Exam
4.7. Properties of Operations on											Quiz #3,#4/Exam
Propositions	х	х		х	х	х				х	#2/Final Exam
											Individual
5. Logic Programming											Assignment #2,
	х	х		х	х	х	х			х	#3/Exam #2
											Individual
5.1. Prolog syntax and relations											Assignment #2,
	х	х		х	х	х	х			х	#3/Exam #2
5.2 Application of Prolog Facts and											Individual
Rules											Assignment #2,
	х	х		х	х	х	х			х	#3/Exam #2
5.3 Modeling Real-world											Individual
relationshing using Prolog											Assignment #2,
	х	х		х	х	х	х			х	#3/Exam #2
											Individual
5.4. Recursion											Assignment #2,
	х	х		х	х	х	х			х	#3/Exam #2
											Quiz #3,#4/Exam
6. Boolean Algebras and Circuit											#2/Final Exam
Design											Individual
	х	х		х	х	х				х	Assignment #3
											Quiz #3,#4/Exam
6.1. Boolean Polynomials											#2/Final Exam
											Individual
	Х	х		Х	Х	х				х	Assignment #3
6.2. Lattices and Partially Ordered											
Sets	Х	х		Х	Х					Х	Quiz #3
6.3. Digital Logic Gates	х	Х		Х	Х	Х	Х			х	Quiz #3,#4/Exam

Version Date: February 2012

										#2/Final Exam
										Individual
										Assignment #3
										Quiz #3,#4/Exam
										#2/Final Exam
6.3.1. AND gate										Individual
		х	х	x	x	x	х		х	Assignment #3
										Quiz #3,#4/Exam
										#2/Final Exam
6.3.2. UR gate										Individual
		х	х	х	х	х	х		х	Assignment #3
										Quiz #3,#4/Exam
										#2/Final Exam
6.3.3. NUI gate										Individual
		х	х	х	х	х	х		х	Assignment #3
										Quiz #3,#4/Exam
(A Circuit Design										#2/Final Exam
6.4. Circuit Design										Individual
		х	х	х	х	х	х		х	Assignment #3
										Quiz #3,#4/Exam
6.4.1. Relationship with Boolean										#2/Final Exam
Expressions and Truth Tables										Individual
		х	х	х	х	х			х	Assignment #3
										Quiz #3,#4/Exam
6 E Sum of Broducts Expression										#2/Final Exam
0.5. Sum of Products Expression										Individual
		х	х	х	х	х	х		х	Assignment #3
6.5.1. Minimization of Sum of										Quiz #3,#4/Exam
Products Expression		х	х	х	х	х			х	#2/Final Exam
6.5.2. Karnaugh Maps for minimizing										Quiz #3,#4/Exam
number of circuit components		х	х	х	х				х	#2/Final Exam
										Quiz #3,#4/Exam
7. Algorithms and the Growth of										#2/Final Exam
Functions										Team Assignment
	х	х	х	х	х	х		х	х	#1
										Quiz #3,#4/Exam
7.1 Computational Complexity										#2/Final Exam
7.1. Computational Complexity										Team Assignment
	х	х	х	х	х	х		х	х	#1
										Quiz #3,#4/Exam
7.2 Definition of hig_0										#2/Final Exam
	1									Team Assignment
	х	х	х	х	х	х		х	Х	#1
7.3 Definition of hig-A	1									Quiz #3,#4/Exam
	х	х	х	х	х	х		х	х	#2/Final Exam

												Team Assignment
												#1
7.4 Interpreting algorithms												
expressed as pseudocode												Team Assignment
	х	х	х	х	х	х	х	х	х	х	х	#1
												Exam #1
												Team Assignment
7.5. Recursion												
												Individual
	Х	Х	Х		X	Х	X	Х	Х		X	Assignment $\#2$
7.6 Pulse for determining the Q												Quiz #3,#4/Exam
class of a Function												Toom Assignment
	v	v	v		v	v	v		v		v	
	^	^	^		^	^	^		^		^	0uiz #4/Exam
8. Integers and Counting		x	x		x	x	x				x	#2/Final Exam
		~	~				~					Ouiz #4/Exam
8.1. Properties of Integers		x	х		x	x	x				х	#2/Final Exam
												Quiz #4/Exam
811 Prime ICM CCD												#2/Final Exam
												Individual
		х	х		х	х	х	х			х	Assignment #4
8.2. Integer Representations (Base												Quiz #4/Exam
n expansions)		х	х		х	х	х	х			Х	#2/Final Exam
												Quiz #4/Exam
												#2/Final Exam
8.3. Permutations												Individual
												Assignment #4
												#2
		X	х		X	X	X	X			X	$\pi 2$ Ouiz #4/Exam
												#2/Final Exam
												Individual
8.4. Combinations												Assignment #4
												Team Assignment
		х	х		x	х	х	х			х	#2
8.5. The Pigeonhole Principle		х	х		х	х					х	Exam #2
												Quiz #4/Exam
												#2/Final Exam
9 Discrete Probability												Individual
												Assignment #4
												Team Assignment
	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	#2
9.1. Sample Spaces												Uuiz #4/Exam
	Х	Х	Х		Х	Х	Х	Х	Х		Х	#2/Final Exam

												Individual
												Assignment #4
												Team Assignment
												#2
												Quiz #4/Exam
												#2/Final Exam
0.2 Events												Individual
9.2. Events												Assignment #4
												Team Assignment
	х	х	х		х	х	х	х	х		х	#2
												Quiz #4/Exam
												#2/Final Exam
9.3. Assigning Probabilities to												Individual
Events												Assignment #4
												Team Assignment
	х	х	х		х	х	х	х	х		х	#2
												Quiz #5/Final Exam
												Individual
10. Boolean Matrices												Assignment #5
												Team Assignment
	х	х	х	х	х	х	х	х	х	х	х	#2
												Quiz #5/Final Exam
10.1.Elements												Individual
		х	х		х	х	х	х			Х	Assignment #5
												Quiz #5/Final Exam
10.1.1. Zero Matrix												Individual
		х	х		х	х	х	х			Х	Assignment #5
												Quiz #5/Final Exam
10.1.2. Identity (Diagonal) Matrix												Individual
		Х	Х		Х	Х	Х	Х			Х	Assignment #5
												Quiz #5/Final Exam
10.2.0perations												Individual
		х	х		х	х	х	х			Х	Assignment #5
												Quiz #5/Final Exam
10.2.1. Meet												Individual
		х	Х		х	Х	х	х			х	Assignment #5
												Quiz #5/Final Exam
10.2.2. Join												Individual
		Х	Х		х	Х	Х	Х			Х	Assignment #5
												Quiz #5/Final Exam
10.2.3. Boolean product												
		Х	Х		Х	Х	Х	Х			Х	Assignment #5
10.2 Proportion												Quiz #5/Final Exam
10.3.Properties												
		Х	Х	1	Х	Х	Х	1			Х	Assignment #5

11 Deletions and Disyonhs											Quiz #5/Final Exam Individual
11. Relations and Digraphs											Team Assignment
	х	х	Х	х	х	х	х	Х	Х	Х	#3
											Final Exam
11.1.Partitions and Coverings											leam Assignment
	Х	X	X	Х	X	X		Х	Х	Х	#3 Ouiz #E /Einal Evam
											Quiz #5/Filiai Exalli Individual
11.2 Relations and Sets											Assignment #5
11.2.Aciations and Sets											Team Assignment
	x	x	x		x	x	x	х		x	#3
		~					~	~		~	Quiz #5/Final Exam
											Individual
11.3.Relations and Functions											Assignment #5
											Team Assignment
	х	х	х		х	х	х	Х		х	#3
											Quiz #5/Final Exam
											Individual
11.4.Relations and Boolean Matrices											Assignment #5
											Team Assignment
	х	х	Х		Х	Х	Х	Х		Х	#3
											Quiz #5/Final Exam
11.5.Representing relations as											Assignment #5
Digraphs											Assignment
	×	×	x		x	x	×	x		x	#3
	~		~		~			Λ		~	Ouiz #5
11.5.1. In-degree of nodes											Team Assignment
0	х	x	x		x	х	х	х		х	#3
											Quiz #5
11.5.2. Out-degree of nodes											Team Assignment
	х	х	х		х	х	х	Х		х	#3
											Quiz #5/Final Exam
11.5.3. Paths and Cycles											Team Assignment
	х	х	х		х	х	х	Х		Х	#3
											Quiz #5/Final Exam
11.6.Connectivity Relation											Team Assignment
	х	X	Х	х	Х	Х	X	Х	Х	Х	#3 Ouiz #E /Einal Evam
											Individual
11.7 Properties of Relations											Assignment #5
											Team Assignment
	x	х	x		x	х	х	х		x	#3

												Quiz #5/Final Exam Individual
11.7.1. Reflexive and Irreflexive												Assignment #5
												Team Assignment
	х	х	х		х	х	x		х		х	#3
												Quiz #5/Final Exam
1172 Symmetric Antisymmetric												Individual
and Asymmetric												Assignment #5
												Team Assignment
	х	х	Х		х	Х	х		Х		Х	#3
												Quiz #5/Final Exam
1173 Transitivo												Assignment #5
												Team Assignment
	x	x	х		x	х	x		х		х	#3
												Quiz #5/Final Exam
												Individual
11.8.Closures												Assignment #5
												Team Assignment
	х	Х	Х		Х	Х	Х	х	Х		Х	#3
												Quiz #5/Final Exam
11.8.1. Reflexive, Symmetric, and												Assignment #5
Transitive Closures												Team Assignment
	x	х	х		х	х	х	х	х		х	#3
												Quiz #5/Final Exam
												Individual
11.8.2. Warshall's Algorithm												Assignment #5
												Team Assignment
	х	х	Х		х	Х	х	х	Х		Х	#3
10 Trace												Quiz #6/Final Exam
12. Trees											.,	#2
	X	X	Х		X	Х	X		Х		Х	#5 Quiz #6/Final Evam
12.1.Definition of Trees												Team Assignment
	x	x	х		x	х	x		х		х	#3
	1											Quiz #6/Final Exam
12.2. I ree levels, parents, siblings,												Team Assignment
leaves, ver tex	х	х	х		х	х	х		х		х	#3
												Quiz #6/Final Exam
12.3.N-trees												Team Assignment
	Х	Х	Х		Х	Х	Х		Х		Х	#3
12.4.Binary Trees and Complete												Quiz #0/Final Exam
Binary Trees	Y	¥	Y		¥	Y	¥		¥		x	#3
	1 ^	L ^	^	Î.	L ^	^	· ^ ·	Î.	^	1	^	

12 Sequences Strings and Pegular										Quiz #6/Final Exam
Fyproscions										Individual
Expressions	х	х		х	х	х			х	Assignment #6
										Quiz #6/Final Exam
13.1.Infinite and finite sequences										Individual
	х	х		х	х	х			х	Assignment #6
										Quiz #6/Final Exam
13.2.Recurrence relations										Individual
	х	х		х	х	х			х	Assignment #6
12.2 Soto corresponding to a										Quiz #6/Final Exam
15.5.Sets corresponding to a										Individual
sequence	х	х		х	х	х			х	Assignment #6
										Quiz #6/Final Exam
13.4.Regular Expression Alphabet										Individual
	х	х		х	х	х			х	Assignment #6
										Quiz #6/Final Exam
13.5.Regular Expression over a Set										Individual
	х	х		х	х	х			х	Assignment #6
										Quiz #6/Final Exam
14. Languages and Grammars										Individual
	х	х		х	х	х			х	Assignment #6
										Quiz #6/Final Exam
14.1.Natural Language VS. Computer										Individual
Language	х	х		х	х	х			х	Assignment #6
										Quiz #6/Final Exam
14.2.Phrase Structure Grammar										Individual
	х	х		х	х	х			х	Assignment #6
										Quiz #6/Final Exam
14.3.Terminals and Nonterminals										Individual
	х	х		х	х	х			х	Assignment #6
										Quiz #6/Final Exam
14.4.Production Rules										Individual
	х	х		х	х	х			х	Assignment #6
										Quiz #6/Final Exam
14.5.Derivation Trees										Individual
	х	х		х	х	х			х	Assignment #6
14 6 Deculer Cremmers and Beculer										Quiz #6/Final Exam
Fyproscions										Individual
Expressions	х	х		х	х	х			х	Assignment #6
										Quiz #6/Final Exam
15. Machines and Languages										Individual
	х	х		x	х	х			х	Assignment #6
		_	_		_	_				Quiz #6/Final Exam
15.1.Finite State Machines										Individual
	х	х		х	х	х	1		х	Assignment #6

15.1.1. States and Alphabet									Quiz #6/Final Exam Individual
	х	х	х	х	х			х	Assignment #6
									Quiz #6/Final Exam
15.1.2. State transition table									Individual
	х	х	х	х	х			х	Assignment #6
									Quiz #6/Final Exam
15.1.3. Acceptance States									Individual
	х	х	х	х	х			х	Assignment #6
									Quiz #6/Final Exam
15.2.Language of a Machine									Individual
	х	х	х	х	х	х		х	Assignment #6
									Quiz #6/Final Exam
15.3.Moore machine									Individual
	х	х	х	х	х	х		х	Assignment #6

E. Academic Advising

Advising Strategy and Process

The Department of Computer Science operates on three separate campuses, and each campus has designated advising personnel. At the main campus in Ogden, Ms. Anita Proul provides simple, routine advising and major declaration. Drs. Greg Anderson and Richard Fry provide advanced advising, including transfer credit, graduation pass-off, and detailed program planning. Mr. Bradley Peterson provides all advising at the Davis campus. Mr. Ted Cowan provides all advising at the Salt Lake Community College campus.

Effectiveness of Advising

Students are encouraged to have appointments with an advisor at least once a year. During the interview, plans are created for the sequence of courses needed to complete the requirements in the amount of time designated by the students.

The effectiveness of the advising is shown through students taking the courses in correct sequence; thus, eliminating extra semesters. Those who do not meet with their advisors find their courses out of sequence and cannot take the next course due to prerequisites not being fulfilled.

Past Changes and Future Recommendations

The Department of Computer Science has created and follows an extended course schedule that rotates on a four-year cycle. The extended schedule projects the number of specific courses needed over time and the semesters when the courses are offered. Although the department follows the schedule closely, it is altered occasionally based on enrollment, demand, and resources. Working from the extended schedule allows students to better plan their individual programs. Specifically, students can better tailor their program to their work and family schedules while minimizing the number of semesters taken to complete their degree.

The following table defines the extended course schedule.

Year 1 = 2010, 2014, ... Year 2 = 2011, 2015, ... Year 3 = 2012, 2016, ... Year 4 = 2013, 2017, ... M = Main Ogden campus D = Davis campus S = SLCC campus O = Online

Note that MATH 1630 will be replaced by CS 3130 in the future.

		Year 1			Year 2			Year 3			Year 4	
	Spring	Summer	Fall									
CS 1010	M, D, O	D, O	Μ, Ο	M, D, O	D, O	Μ, Ο	M, D, O	D, O	Μ, Ο	M, D, O	, D, O	М, О
CS 1030	M, D, O	D, O	M, D, O	M, D, O	D, O	M, D, O	M, D, O	D, O	M, D, O	M, D, O	, D, O	M, D, O
CS 1400	M, D, O	0	M, D, O	M, D, O	0	M, D, O	M, D, O	0	M, D, O	M, D, O	0	M, D, O
CS 1410	M, D	0	М, О	M, D	0	Μ, Ο	M, D	0	М, О	M, D	0	М, О
CS 2350	M, D	0	М, О	M, D	0	Μ, Ο	M, D	0	М, О	M, D	0	М, О
CS 2420	М	0	M, D									
CS 2450		0	М	D		М		0	М	D		М
CS 2550	М	0	M, D									
CS 2650	M, D	0	0									
CS 2705	М	0	M, D									
CS 3030	s					М	S					М
CS 3040		S	М	S		М		S	М	s		М
CS 3100	M, D	S	M, S	М		M, S	М	S	M, S	М		M, S
CS 3210	м		S	М		S	М		S	М		S
CS 3230	M, S		М	S	D	М	М	S	М			М
CS 3540	s		М		S	М	S		М		S	М
CS 3550	м		S	М		S	М	D	S	М		S
CS 3705	м		S	М		S	М		S	М		S
CS 3730			М						М			
CS 3750		D	M, S			M, S			M, S			M, S
CS 3805	s					М	S					М
CS 3830			М				М		D			
CS 3840			М						М			S
CS 4110	M, S		М	M, S		М	M, S	D	М	M, S		М
CS 4230						М						М
CS 4280			М	S					М	s		
CS 4350	м		М	М		М	М		M, S	М	S	М
CS 4500				М		S				М		S
CS 4730	М			М			М			М		
CS 4740	s		М	s		М	S		М	s		М
CS 4750	M, S			M, S			M, S		D	M, S		
CS 4780		D	М	S		М	S		М	s		M, D
CS 4790	М		S	М	D		М			М	D	
CS 4820			S			М		D	S			М
CS 4830		S			S	М		S			S	М
MATH 1630	М	0	M, D									
MGMT 2400	M, D	S	M, D	M, D		M, D, S	M, D	S	M, D	M, D, S	S	M, D, S

F. Faculty

Faculty Demographic and Diversity Information

The Computer Science program currently employs thirteen full-time faculty members and approximately twelve part-time adjunct instructors. (The number and composition of adjuncts varies over time; therefore, their information is included only in the rank/tenure data).

Main Categories	Subcategory	%
Gender	Male	100.0%
Ethnicity	Euro-American	92.3%
	Afro-American	7.7%
	Disabled	7.7%
	Veteran	15.4%
Degree	Doctorate	46.1%
	Master's	38.5%
	Bachelor's	15.4%
Rank/Tenure	Tenured	28.0%
	Tenure Track	16.0%
	Instructor	8.0%
	Adjunct	48.0%
Years Teaching	<5	46.2%
	5-20	46.2%
	>20	7.7%

Programmatic/Departmental Teaching Standards and Faculty Qualifications

Tenured faculty must meet one of the following two requirements:

- 1. Attainment of the earned doctorate in Computer Science or a related field plus two years of full-time industry experience, or
- 2. A master's degree in computer science or a related field plus five years of fulltime industry experience and appropriate industry certification.

Adjuncts must have a degree in computer science or a related field and be currently active in the content area in which they are instructing. Adjuncts must submit:

- A current resume
- Copies of teaching licensure or certification
- Documentation of degree and years of related experience

Evidence of Effective Instruction

- Regular Faculty
 All faculty (both tenured and tenure track) are evaluated each semester for every class they teach. Any concerns are discussed with the department chair.
- ii. Adjunct Faculty
 All adjunct faculty members are evaluated each semester for every class they teach. Any concerns are discussed with the department chair.

Mentoring Activities

Faculty mentors work with adjunct faculty to improve teaching and to assist with classroom issues such as testing, syllabi, online, cheating, and classroom discipline.

Mr. Bradley Peterson and Mr. Ted Cowan manage adjunct faculty at the Davis and the SLCC Campuses respectively. They provide direct support and advice regarding syllabi, student performance, classroom ambience, instructional materials, and performance. A record of each adjunct faculty is maintained and used in assessing future employment. Any concerns are immediately discussed with the department chair.

Ongoing Review and Professional Development

Faculty members are provided opportunities in many avenues for professional development in areas of instruction, scholarship, and service. This includes taking professional courses, attending and/or presenting a professional conferences, and participating in research and scholarly discussion groups on campus.

All contract, salaried faculty are encouraged to submit proposals to the Research Scholarship and Professional Growth Committee and the Academic Resources and Computing Committee.

G. Support Staff, Administration, Facilities, Equipment, and Library

Adequacy of Staff

See Appendix C.

Adequacy of Administrative Support

The Department of Computer Science enjoys excellent support from university, which supplies essential infrastructure. The infrastructure includes campus-wide network support and a global network connection, hosting faculty web pages, Chi-Tester (an automated online exam delivery tool), and WSU Online (a web-based instructional tool that supports online and hybrid - online and in-class - instruction). The WSU Online staff routinely provides training and ongoing support and emerging technologies. Many of the CS faculty members have received Master Online Teacher certification by completing a series of workshops coordinated by the WSU Online office related to teaching techniques and current technology.

Adequacy of Facilities and Equipment

The Department of Computer Science participates in the Microsoft Developer Network Academic Alliance (MSDNAA) through which it provides to its students the essential software used in many its courses. The latest versions of the software are provided to students at no cost and include operating systems, integrated development environments (editors, compilers, debuggers, etc.), diagramming and scheduling tools, etc. The Department of Computer Science maintains the following facilities:

Building	Room	Room Type/Usage
	Number	
Technical Education	103C	Computer Lab / Classroom (30 N-Computing
Building		Workstations, 1 Server)
Ogden Campus	103D	Computer Lab / Classroom (30 N-Computing
		Stations, 1 Server)
	108	Computer Lab / Classroom (18 Mac
		Workstations, 1 Server)
	109F	Computer Lab / Classroom (22 PC Computers,
		1 Server)
	109D	Computer Lab / Classroom (13 Computers)
	109C	Computer Lab / Classroom (24 N-Computing
		Workstations, 1 Server)
	202S	Computer Lab / Classroom (31 Computers)
	105-105	Classroom (62 seats)
	109B, 110I	Conference / Meeting Rooms
	109	Open Study Lab (20 N-Computing
		Workstations, 1 Server)
	110(B-G, J-K),	Faculty Offices
	111(A-C)	
	109A	Lab Manager Office
	110	Administrative Assistant Office
	103E	Storage (potential small computer lab)
	109E, 103A&B	Parts and Equipment Storage
	110H	Break Room
D2	312	Computer Lab / Classroom (30 PC
Davis Campus		Computers)
	314	Computer Lab / Classroom (28 PC
		Computers)
Salt Lake Community	B126	Computer Lab / Classroom (23 seats & 23 PC
College		Computers)
Meadowbrook	B130	Computer Lab / Classroom (23 seats & 16 PC
Campus (Bldg B)		Computers)

All computer labs also include an instructor's workstation.

Adequacy of Library Resources

The Stewart Library maintains extensive subscriptions to numerous academic databases, on which faculty and students rely for research. In addition to maintaining a wide selection of printed material on location, the library is also able to retrieve books and scholarly articles from a national network of lending libraries.

H. Relationships with External Communities

Description of Role in External Communities

The Department of Computer Science enjoys the support and guidance of an Industry Advisory Committee composed of computing businesses located along the northern Wasatch Front. The advisory committee has been essential to the development of CS department's current curriculum. The committee's recommendations help keep courses current and relevant and also provide input regarding quality of student work.

Local businesses and organizations provide support to the department in several ways. They provide internships, which provide an opportunity for students to gain relevant work experience. Businesses also contact the department seeking part-time employees still in school and full-time employees following graduation.

Many local businesses also contribute financially to the department. Contributions are often in the form of student scholarships and occasionally provide for hardware or facility upgrades. See Appendix E for further details.

I. Results of Previous Program Reviews

Previous Program Review: 2003-2004									
Problem Identified	Action Taken:	Progress:							
Develop a system of communication between University	Change in IT staff.	Previous issues with							
IT Division, lab managers and the faculty	The CS lab manager has developed a	the IT department							
	professional relationship with the	resulted in the CS							
	current IT personnel and has access to	department							
	the IT department's secure facilities.	computers being							
		sporadically							
		disconnected from the							
		network. These issues							
	Action to Be Taken:	have been resolved							
	Complete	and the IT department							
		now hosts the CS							
		department's							
	-	networked servers.							
Continue to use the Advisory Council for developing ways	Action Taken:	Progress:							
to improve programs	The department currently meets with	The industry advisory							
	the advisory committee two times each	committee made							
	academic year: Fall and Spring semester.	numerous							
		recommendations							
		regarding the							
		curriculum. The							
		department has							
		implemented all							
		recommendations,							
	Action to Be Taken:	leading to significant							
	Task is ongoing	improvements to the							
		curriculum.							

Hire more qualified faculty	Action Taken:	Progress:
	Faculty that have retired or have been	Budgetary constraints
	promoted are being replaced. However,	preclude hiring
	staffing levels have not increased since	additional faculty
	the last review even though enrollment	members at this time.
	levels have increased.	
	Action to Be Taken:	
	There is still a need to hire more	
	qualified faculty members.	
Keep course work up-to-date	Action Taken:	Progress:
	Overhauled the curriculum increasing	The curriculum
	the amount of math and science	overall was carried
	required.	out under the
	Dropped obsolete courses.	direction of the
	Developed new courses to support	industrial advisory
	emerging technologies.	committee. The
		committee has
		indicated that the
		current curriculum is
		appropriate for
		current and projected
		industry needs. New
	Action to Be Taken:	courses in mobile
	Task is ongoing	computing have been
		added since the last
		review.

Expand the opportunities for faculty to obtain additional	Action Taken:	Progress:
educational credentials	All faculty are encouraged to submit	Since the last review:
	grant proposals for professional growth.	One faculty member
	Faculty are encouraged to attend	(with a previous
	courses technical and certification	master's degree)
	courses and the department and college	completed a
	share the expense.	bachelor's degree in
	The college continues to offer financial	CS;
	support for faculty seeking appropriate	Two faculty members
	graduate degrees.	have completed
		master's degrees; and
	Action to Be Taken:	Four faculty members
	Task is ongoing	have completed
		doctorates.
Require more mathematics for the Systems Integration	Action Taken:	Progress:
emphasis or more mathematics and science for the	Renamed and moved the systems	The department
Software Engineering emphasis that will better meet	integration out of the CS department.	continues to monitor
ABET accreditation standards	Increased the math and science	national and world-
	requirement for the engineering	wide trends in
	emphasis to match ABET requirements.	computer science and
	Action to Be Taken:	the evolving ABET
	Complete	standards to ensure
		that its curriculum
		conforms to accepted
		standards. Current
		math and science
		standards do conform
		to ABET and align well
		with the curricula of
		similar institutions.

J. Action Plan for Ongoing Assessment Based on Current Self-Study Findings

Action Plan for Evidence of Learning Related Findings

Problem Identified	Action to Be Taken
The CS department must fully implement its data	Establish performance indicators for all student outcomes:
collection and assessment plans to assure that all student	Summer 2012
outcomes are being met and to support ABET	Establish scoring rubrics for all performance indicators: Summer 2
accreditation.	Implement the 5-year data collection schedule outlined in section
	D: 2012 - 2017
The first ABET accreditation visit is currently anticipated	Collect and analyze first year data in anticipation of first
Fall semester, 2013.	accreditation visit: 2012 - 2013
	Gather and organize assessment artifacts: 2013

Action Plan for Staff, Administration, or Budgetary Findings

Problem Identified	Action to Be Taken
Hire more qualified faculty	Current 5 Year Program Review: 2017
	Request one or more additional tenure-track faculty positions for the
	Department of Computer Science.

APPENDICES

Appendix A: Student and Faculty Statistical Summary for Computer Science Department

	2006-07	2007-08	2008-09	2009-10	2010-11
Student Credit Hours Total	7,147	6961.5	7,612	8,839	10,590
Student FTE Total	238.23	232.05	253.73	294.63	353.00
Student Majors					
Computer Science	493	483	540	590	667
Program Graduates					
Certificate					2
Associate Degree	35	28	32	34	38
Bachelor Degree	89	75	71	60	63
Student Demographic Profile	493	483	540	590	667
Female	38	37	39	45	66
Male	455	446	501	545	601
Faculty FTE Total	23.43	22.15	20.36	18.82	NA
Adjunct FTE	11.13	9.84	12.64	9.51	NA
Contract FTE	12.31	12.31	7.72	9.31	NA
Student/Faculty Ratio	10.17	10.48	12.46	15.66	NA

Note: Data provided by Institutional Research

Name	Gender	Ethnicity	Rank	Tenure Status	Highest Degree	Years of Teaching	Areas of Expertise
Greg	М	Euro-	Associate	Tenured	Doctorate	12	Software Engineering, Gaming, Database
Anderson		American					Development/Management, Project
							Management
Delroy	М	Euro-	Associate	Tenured	Doctorate	16	Programming, operating systems,
Brinkerhoff		American					knowledge and learning
Ted Cowan	М	Afro-	Assistant	Tenure	Master's	3	Unix Programming, Scripting, Software
		American		Track			Engineering, Project Management, Online
							instruction and Operating Systems
David Ferro	M	Euro-	Associate	Tenured	Doctorate	10	Early instruction in computer science,
		American					computing history and culture, usability
							and user-centric design, web development,
				- ·			service learning, online instruction
Richard Fry	M	Euro-	Associate	Tenured	Doctorate	11	Relational DB Design, SQL Programming,
		American					N-Tier Web Development
Robert	M	Euro-	Associate	Tenured	Master's	13	Database Theory and Design, SQL
Hilton		American					Programming, Enterprise System
							Development, Web Development, Mobile
				m			Development, Computer Architecture
Spencer	М	Euro-	Instructor	Tenure	Master's	5	Software Engineering, Project
Hilton		American		TTACK			Management, Mobile Development,
I	М		Toolo ale a	Non Tonuro	Deckeley's	1	Database
Joshua	M	Euro-	Instructor	Track	Bachelor's	1	Software Engineering, Mobile
Jensen		American					Development, web Development, UX
Develd	М		A		Destaute	24	Design, Database
Konald	M	Euro-	Associate	renured	Doctorate	34	Artificial intelligence, especially numan
Peterson		American					language processing and cryptography.

Appendix B: Contract/Adjunct Faculty Profile

Name	Gender	Ethnicity	Rank	Tenure Status	Highest Degree	Years of Teaching	Areas of Expertise
Bradley	М	Euro-	Instructor	Non Tenure	Bachelor's	4	Parallel programming, GPU programming,
Peterson		American		ITACK			data structures and algorithms
Brian Rague	Μ	Euro-	Associate	Tenured	Doctorate	10	Software Engineering, parallel computing
		American					and programming languages
Garth Tuck	М	Euro-	Assistant	Tenure	Master's	2	
		American		Track			
Drew	М	Euro-	Assistant	Tenure	Master's	6	Information Assurance and Network
Weidman		American		Track			Security

Appendix C: Staff Profile

Name	Gender	Ethnicity	Job Title	Years of	Areas of Expertise
				Employment	
Anita Proul	F	Euro-	Secretary II	5	Office Support
		American			Student Advising
Patrick Beck	М	Euro-	Technical Support	7	Computer Hardware and Software
		American	Specialist		Networking
					Database Administration

Appendix D: Financial Analysis Summary

Department of Computer Science						
Cost	06-07	07-08	08-09	09-10	10-11	
Direct Instructional Expenditures	1,322,954	1,399,151	1,092,461	1,144,647	1,140,885	
Cost Per Student FTE	5,553	6,030	4,306	3,885	3,232	
Funding	06-07	07-08	08-09	09-10	10-11	
Appropriated Fund	1,281,052	1,213,518	1,080,300	1,109,031	1,100,059	
Other:						
Special Legislative Appropriation						
Grants of Contracts		118,869				
Special Fees/Differential Tuition	41,902	66,764	12,161	35,616	40,825	
Total	1,322,954	1,399,151	1,092,461	1,144,647	1,140,885	

Note: Data provided by Provost's Office

Name	Organization
Sean Stromberg	Imagicom
Jim Hood	LDS Church
Michael Halverson	IRS
John Blackburn	Disney
Shawn Cowder	Boeing
Russ Reed	MarketStar
Steve Hilton	America First Credit Union
Matt Baxter	Bank of Utah
Randall J Hughes	L3
Christine Barton	Sorenson Communications
Donald Brenner	Sorenson Communications
Mattock Smith	SelectHealth
George R New	HAFB
Norm LeClair	HAFB
Chuck Crandall	WebChuck Web Design
John Minor	HAFB
David Young	Autoliv
Matt Firth	АТК
Robyn Hunter	Flying J
Kyle Andersen	IHC
Lin Richardsen	IHC
Mike Taylor	Guru Technologies

Appendix E: External Community Involvement Names and Organizations (Industrial Advisory Committee)

Appendix F: External Community Involvement Financial Contributions

Organization	Amount	Туре
L3	\$55K	Donation
IBM	\$20K	Donation
SIMS	\$\$4.5K	Donation
Stewart Trust	\$50K	Donation
Imagicom	\$500	Donation
MarketStar	In Progress	Donation